Chemically accurate excitation energies with small basis sets
نویسندگان
چکیده
منابع مشابه
Excitation energies from frozen-density embedding with accurate embedding potentials.
We present calculations of excitation energies within the time-dependent density functional theory (TDDFT) extension of frozen-density embedding (FDE) using reconstructed accurate embedding potentials. Previous applications of FDE showed significant deviations from supermolecular calculations; our current approach eliminates one potential error source and yields excitation energies of generally...
متن کاملAccurate Electron Densities at Nuclei Using Small Ramp-Gaussian Basis Sets.
Electron densities at nuclei are difficult to calculate accurately with all-Gaussian basis sets because they lack an electron-nuclear cusp. The newly developed mixed ramp-Gaussian basis sets, such as R-31G, possess electron-nuclear cusps due to the presence of ramp functions in the basis. The R-31G basis set is a general-purpose mixed ramp-Gaussian basis set modeled on the 6-31G basis set. The ...
متن کاملComputation of accurate excitation energies for large organic molecules with double-hybrid density functionals.
Time-dependent double-hybrid density functional methods are evaluated for the calculation of vertical singlet-singlet valence excitation energies of a wide variety of organic molecules. Beside the already published TD-B2-PLYP method, an analogous approach based on the recently published ground state B2GP-PLYP functional is presented for the first time. Double-hybrid functionals contain a hybrid...
متن کاملAn accurate and linear-scaling method for calculating charge-transfer excitation energies and diabatic couplings.
Quantum-mechanical methods that are both computationally fast and accurate are not yet available for electronic excitations having charge transfer character. In this work, we present a significant step forward towards this goal for those charge transfer excitations that take place between non-covalently bound molecules. In particular, we present a method that scales linearly with the number of ...
متن کاملAssessing weak hydrogen binding on Ca+ centers: an accurate many-body study with large basis sets.
Weak H(2) physisorption energies present a significant challenge to even the best correlated theoretical many-body methods. We use the phaseless auxiliary-field quantum Monte Carlo method to accurately predict the binding energy of Ca(+)-4H(2). Attention has recently focused on this model chemistry to test the reliability of electronic structure methods for H(2) binding on dispersed alkaline ea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Chemical Physics
سال: 2019
ISSN: 0021-9606,1089-7690
DOI: 10.1063/1.5122976